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Research

Predicting air pollution concentrations at reso-
lutions capable of capturing local-scale pollut-
ant gradients over large geographical areas is 
becoming increasingly important in multicity 
and national health studies; in population expo-
sure assessment; and in support of policy, sur-
veillance, and regulatory initiatives. Currently, 
fixed-site government monitors are the foun-
dation of these activities; however, because of 
siting criteria, such monitors may fail to fully 
capture local-scale pollutant variability. In addi-
tion, the number of monitors and their spa-
tial distribution may be limited, as is the case 
in Canada. At present, few methodologies are 
available that adequately capture local-scale pol-
lutant variability at a national scale when moni-
tor density, distribution, or siting is suboptimal.

A number of approaches may be used to 
model air pollution over large areas, includ-
ing interpolation of fixed-site government 
monitoring data, dispersion modeling, satellite 
remote sensing, land use regression (LUR), 

and proximity and deterministic methods. 
Each approach, however, has inherent limita-
tions that restrict its use for producing local-
scale pollution estimates. Interpolation of 
fixed-site air pollution monitoring data has 
typically been used to predict pollution con-
centrations across large areas (Beelen et al. 
2009), with recent interest directed towards 
kriging methods and spatial smoothing with 
geographic covariates (Beelen et al. 2009; Hart 
et al. 2009; Yanosky et al. 2008). Fixed-site 
monitors may not capture entire populations, 
and measurements typically represent regional 
and between-city pollution differences due to 
monitor siting criteria, which prevent monitors 
from being placed in proximity to major roads 
and other pollution sources. Dispersion mod-
els also exist for large geographical areas and 
have been incorporated into regulatory and 
epidemiological studies of air pollution (Cyrys 
et al. 2005; Nafstad et al. 2003). Importantly, 
the resolutions of pollutant estimates from 

dispersion models over large geographical areas 
are typically restricted, for example, to 1 or 3 
km2 (Jerrett et al. 2005). Satellite remote sens-
ing is a new methodology available to predict 
air pollution concentrations over large geo-
graphic areas, and a number of studies have 
evaluated different remotely sensed concen-
trations of fine particulate matter [PM with 
aerodynamic diameter ≤ 2.5 μm (PM2.5)] (e.g., 
van Donkelaar et al. 2010) and gaseous pol-
lutants (Martin 2008) and found moderate to 
good associations with ground-level monitor-
ing data. Currently, the resolution of satellite 
data limits their use to representing regional 
pollution concentrations, but indicators of 
local air pollution may be used in concert to 
improve the spatial resolution of predictions 
(Liu et al. 2009). LUR approaches have been 
used extensively to predict within-city pollut-
ant concentrations of nitrogen dioxide (NO2) 
and PM2.5 (for review, see Hoek et al. 2008), 
but to a lesser extent for volatile organic com-
pounds (VOCs). However, the approach is 
well suited to modeling pollutants that exhibit 
significant spatial variation, especially traffic-
related VOCs (Atari and Luginaah 2009; 
Mukerjee et al. 2009; Smith et al. 2006; Su 
et al. 2010; Wheeler et al. 2008). The city-
by-city approach in which LUR models are 
created is costly, and integration and interpre-
tation across multiple city models is difficult. 
Simple proximity and deterministic approaches 
have also been widely used as surrogates for 
exposure to vehicle and industrial sources, 

Address correspondence to P. Hystad, School of 
Population and Public Health, University of British 
Columbia, 2206 East Mall, Vancouver, BC, V6T 
1Z3 Canada. Telephone: (604) 312-4768. Fax: 
(604) 822-9588. E-mail: phystad@gmail.com

Supplemental Material is available online (doi:10. 
1289/ehp.1002976 via http://dx.doi.org/).

We thank R. Allen for providing the Edmonton 
and Winnipeg monitoring data; D. Crouse, 
M. Goldberg, and N. Ross for the Montreal data; 
and O. Atari for the Sarnia data.

The research was supported by a grant from the 
Canadian Partnership against Cancer. Health Canada 
also provided support for the development of the 
satellite-derived pollution estimates.

The authors declare they have no actual or 
potential competing financial interests.

Received 15 September 2010; accepted 31 March 
2011.

Creating National Air Pollution Models for Population Exposure Assessment 
in Canada
Perry Hystad,1 Eleanor Setton,2 Alejandro Cervantes,3 Karla Poplawski,4 Steeve Deschenes,2 Michael Brauer,4 
Aaron van Donkelaar,5 Lok Lamsal,5 Randall Martin,5,6 Michael Jerrett,7 and Paul Demers4,8

1School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada; 2Department of 
Geography, University of Victoria, Victoria, British Columbia, Canada; 3Department of Geography, and 4School of Environmental Health, 
University of British Columbia, Vancouver, British Columbia, Canada; 5Department of Physics and Atmospheric Science, Dalhousie 
University, Halifax, Nova Scotia, Canada; 6Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA; 7School of 
Public Health, Division of Environmental Health Science, University of California–Berkeley, Berkeley, California, USA; 8Occupational 
Cancer Research Centre, Cancer Care Ontario, Toronto, Ontario, Canada

Background: Population exposure assessment methods that capture local-scale pollutant  variability 
are needed for large-scale epidemiological studies and surveillance, policy, and regulatory purposes. 
Currently, such exposure methods are limited.

Methods: We created 2006 national pollutant models for fine particulate matter [PM with 
aero dynamic diameter ≤ 2.5 μm (PM2.5)], nitrogen dioxide (NO2), benzene, ethylbenzene, and 
1,3-butadiene from routinely collected fixed-site monitoring data in Canada. In multiple regression 
models, we incorporated satellite estimates and geographic predictor variables to capture back-
ground and regional pollutant variation and used deterministic gradients to capture local-scale vari-
ation. The national NO2 and benzene models are evaluated with independent measurements from 
previous land use regression models that were conducted in seven Canadian cities. National models 
are applied to census block-face points, each of which represents the location of approximately 89 
individuals, to produce estimates of population exposure.

results: The national NO2 model explained 73% of the variability in fixed-site monitor concen-
trations, PM2.5 46%, benzene 62%, ethylbenzene 67%, and 1,3-butadiene 68%. The NO2 model 
predicted, on average, 43% of the within-city variability in the independent NO2 data compared 
with 18% when using inverse distance weighting of fixed-site monitoring data. Benzene models 
performed poorly in predicting within-city benzene variability. Based on our national models, we 
estimated Canadian ambient annual average population-weighted exposures (in micrograms per 
cubic meter) of 8.39 for PM2.5, 23.37 for NO2, 1.04 for benzene, 0.63 for ethylbenzene, and 0.09 
for 1,3-butadiene.

conclusions: The national pollutant models created here improve exposure assessment compared 
with traditional monitor-based approaches by capturing both regional and local-scale pollution 
variation. Applying national models to routinely collected population location data can extend land 
use modeling techniques to population exposure assessment and to informing surveillance, policy, 
and regulation.
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specifically in epidemiological studies; yet, such 
measures in isolation are often poor surrogates 
for exposure. To date, few population exposure 
assessments have incorporated multiple sources 
of data, specifically satellite pollutant estimates, 
LUR modeling of geographic characteristics, 
and information on proximity and pollution 
gradients, to estimate local-scale air pollution 
concentrations at a national scale.

Here we report a modeling initiative to 
produce 2006 national PM2.5, NO2, benzene, 
ethyl benzene, and 1,3-butadiene models for 
Canada that capture local-scale pollutant vari-
ability and apply these models to routinely 
collected population location data to calculate 
population exposures. This research is part of 
Carex Canada, a national surveillance initiative 
designed to estimate the number of Canadians 
potentially exposed to known or suspected envi-
ronmental and occupational carcinogens (Carex 
Canada 2011). This research adds to the lit-
erature on air pollution modeling and exposure 
assessment by creating national LUR models 
from fixed-site monitoring data; incorporat-
ing various predictor data sets and methods to 
capture the different scales of pollution sources; 

and extending LUR modeling techniques to 
population exposure assessment and to inform-
ing surveillance, policy, and regulation.

Materials and Methods
Pollutant modeling approach. Models were 
developed in two stages using different pre-
dictor variables and methodology to capture 
background, regional, and local-scale pollution 
variation. First, for each National Air Pollution 
Surveillance (NAPS) fixed-site monitoring 
station, we derived satellite-based estimates 
(PM2.5 and NO2 only) and geographic vari-
ables (e.g., road length, population density, 
proximity to large emitters) using ArcGIS 
(version 9.3; ESRI, Redland, CA, USA). We 
used forward stepwise regression to develop 
LUR models and retained variables that cor-
responded to hypothesized effect directions; we 
maximized the sums of squares explained by 
Akaike’s information criterion. Spatial autocor-
relation was also evaluated using the Moran’s 
I statistic in ArcGIS. We sought to develop 
parsimonious models rather than traditional 
predictive models that maximize prediction 
but make interpretation of individual variable 

contributions difficult. Only variables signifi-
cant at the p < 0.05 level were included in the 
final  models. As expected, NAPS monitoring 
locations in Canada did not display sufficient 
variability to estimate model coefficients for 
important local-scale parameters, such as prox-
imity to major roadways, because of monitor 
siting. Thus, local-scale predictors were under-
powered in the LUR modeling approach.

In the second stage, we conducted compre-
hensive literature reviews to identify determin-
istic factors to represent local-scale gradients 
in pollutant concentrations associated with 
specific sources (i.e., highways, major roads, 
gas stations). For each pollutant, we identified 
concentrations near these selected sources in 
relation to local background levels and devel-
oped deterministic multipliers with distance 
decay rates (together referred to as gradients 
in this paper) to apply to the background and 
regional concentrations predicted by our LUR 
models. All statistical analyses were conducted 
using SAS (version 9.1; SAS Institute Inc., 
Cary, NC, USA).

Air quality data. Annual average concentra-
tions of PM2.5 (177 monitoring stations), NO2 
(134 monitors), and benzene, ethyl benzene, 
and 1,3-butadiene (53 monitors) were calcu-
lated using data from unique NAPS monitor-
ing sites that were operating during 2006 (see 
Figure 1). Continuous monitoring data from a 
given monitor were included if at least 50% of 
hourly observations were available for a 24-hr 
period and at least 50% of days were available 
in a month. Monthly averages from filter-based 
PM2.5 measurements required a minimum of 
three of five valid measurements per month. 
Annual averages for 2006 were not calculated 
for individual monitors unless there were at 
least 6 months of complete data with one valid 
month per quarter.

NAPS includes different monitor types for 
PM2.5, including tapered element oscillating 
microbalances (TEOMs), dichotomous par-
tisol samplers (Thermo Fisher Scientific Inc., 
Waltham, MA, USA), and beta-attenuation 
mass moni tors (Met One Instruments Inc., 
Grants Pass, OR, USA). Multiple monitors are 
often present at one location, and our compara-
tive analysis found differences in levels measured 
by TEOMs, which are known to underpredict 
PM2.5 because of nitrate evaporation (Dann T, 
personal communication). We therefore selected 
other monitor types when they were available 
at the same location. Those stations with only 
TEOMs available were adjusted based on yearly 
calibration between collocated dichotomous 
and TEOM monitors during 2006 [n = 14, 
dichotomous = 1.640 + 1.089 × (TEOM), 
R2 = 0.89, p < 0.001]. NO2, benzene, ethyl-
benzene, and 1,3-butadiene were measured 
using standard methods (NAPS 2004).

Predictor variables. PM2.5 and NO2 sat-
ellite data. Canada-wide concentrations of 

Figure 1. Location of NAPS monitors that were used to create national PM2.5, NO2, benzene, ethylbenzene, 
and 1,3-butadiene models.
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PM2.5 and NO2 were estimated using satel-
lite atmospheric composition data combined 
with local, coincident scaling factors from a 
chemical transport model [Goddard Earth 
Observing System (GEOS)-Chem 2011]. 
Ground-level PM2.5 estimates were derived 
from aerosol optical depth data from the Terra 
satellite [National Aeronautics and Space 
Administration (NASA) 2011b], in combina-
tion with output from GEOS-Chem simu-
lations to estimate the relationship between 
aerosol optical depth over the atmospheric col-
umn and ground-level PM2.5 (van Donkelaar 
et al. 2010). Ground-level NO2 concentra-
tions were estimated from tropospheric NO2 
columns retrieved from the ozone monitor-
ing instrument on the Aura satellite (NASA 
2011a); GEOS-Chem was also used to cal-
culate the relationship between the NO2 col-
umn and ground-level concentration (Lamsal 
et al. 2008). Both PM2.5 and NO2 were esti-
mated at a 0.1 × 0.1° resolution (~ 10 × 10 
km). Estimates for PM2.5 were calculated from 
2001–2006 data to ensure sufficient observa-
tions. For NO2 estimates, we used data from 
2005 and 2006, because ozone monitoring 
instrument measurements began in late 2004.

Geographic data. We modeled regional 
pollutant variation using geographic predic-
tor variables potentially relevant to pollutant 
sources, emissions, and dispersion. To cap-
ture varying spatial influences of predictors, all 
variables were calculated for circular buffer dis-
tances ranging from 50 m to 50 km. Classes of 
variables included population density derived 
from census block-face points (Statistics 
Canada 2006); 1-km land use classifications 
(Global Land Cover Characterization 2008); 
high-resolution (30 m) land-use classifica-
tions (DMTI Spatial Inc., Markham, Ontario, 
Canada); sources of large industrial emissions 
from the Canadian National Pollutant Release 
Inventory (NPRI; Environment Canada 
2010); small point source locations extracted 
from the Dun and Bradstreet (D&B) Selectory 
database of businesses (Hoovers, Austin, TX, 
USA) in Canada; length of and distance to 
specific road classifications using the DMTI 
Spatial road network, such as freeway, high-
way, major road, and minor road (DMTI 
Spatial Inc.); length and density of railroads; 
elevation; and meteorological variables (pre-
cipitation and temperature). Any geographic 
variables with > 30% zero values—those with 
no predictive features in proximity to a mon-
itor—were recoded as binary (i.e., present/
absent). In total, 10 variable classes and 270 
buffer-specific variables were explored in the 
LUR models.

Deterministic gradients. Gradients were 
developed with a focus on mobile sources and 
gas stations. We conducted a comprehen-
sive literature review of published studies to 
identify the distance from sources at which 

pollutant concentrations typically return to 
background levels, and an expected ratio of 
near-source pollutant levels compared with 
background pollutant levels for each source 
and pollutant. We searched PubMed (2010), 
Web of Science (Thomson Reuters 2010), and 
Google Scholar (2010) using a range of key-
words to identify studies with measurements 
of pollutant gradients. Studies varied widely in 
terms of location, date, methods, duration of 
measures, number of samples, and definition 
of near source and background. We devel-
oped linear gradients using the steepest por-
tion of the exponential decay curves typically 
found in the literature, as the tails of the decay 
functions were very sensitive to local param-
eters. Gradients were also selected to represent 
Canadian conditions. Table 1 summarizes the 
gradients developed for Canada and applied to 
the LUR models.

To identify the distance of each NAPS 
monitor from the nearest highway, major 
road, local urban road, and gas station, we used 
DMTI road network data and D&B com-
mercial data for point sources. If a monitor was 
close enough to one of these features for the 
source to influence pollutant levels, we modi-
fied the corresponding LUR model results (not 
including point source industrial variables) to 
account for the deterministic gradients. For 
example, based on our review of the literature, 
we assumed that NO2 concentrations at the 
side of a highway would be 1.65 times higher 
than LUR-based background concentrations 
but consistent with background levels 300 m 
from the highway; this assumption resulted 
in a distance decay rate of 0.33% per meter 
that was applied to the model to estimate NO2 
 levels within the 300-m gradient buffer.

Model evaluation. We used three 
approaches for model evaluation. Due to the 
small number of NAPS monitoring stations for 
PM2.5, NO2, benzene, ethyl benzene, and 1,3-
butadience, we did not leave out a percentage 
for independent postmodel evaluation, because 
we wanted to capture the greatest range of 

model predictors possible. Therefore, we first 
evaluated all LUR models using a bootstrap 
approach to determine the sensitivity of model 
prediction and parameter estimates to moni-
tor sampling. Random selection of monitors 
was conducted, with replacement, and variable 
coefficients and model R2 values were recorded 
from the new full sample. This was repeated 
for 10,000 iterations to estimate the 95% con-
fidence interval (CI) for overall model predic-
tion and individual variable coefficients. Next, 
we conducted a leave-one-out analysis where 
each LUR model was repeatedly parameterized 
on n – 1 data points and then used to predict 
the excluded monitor measurement. The mean 
differences between the predicted and meas-
ured values were used to estimate model error.

Finally, we evaluated the NO2 and ben-
zene LUR models, with and without gradients, 
against independent data (35–196 monitor-
ing sites per city) previously collected for LUR 
models in seven Canadian cities (for a full 
description of data collection and modeling 
see Allen et al. 2010; Atari and Luginaah 2009; 
Crouse et al. 2009; Henderson et al. 2007; 
Jerrett et al. 2007; Su et al. 2010). Briefly, in 
each city, monitoring took place over a 2-week 
period; data from fixed-site monitors, monitor-
ing during yearly average concentration periods, 
or multiple measurement periods were used 
to estimate yearly averages [see Supplemental 
Material, Table 1 (doi:10.1289/ehp.1002976) 
for the city-specific data used for model evalu-
ation]. These pollution measurements were col-
lected at much higher spatial densities than were 
NAPS and from monitors that were located to 
specifically capture spatial pollutant gradients. 
Consequently, these data were reasonable for 
use as a gold standard to determine how well 
the two national NO2 and benzene models (the 
LUR models and the LUR models with gradi-
ents) predicted within-city variation. In addi-
tion, we compared the city-specific data with 
estimates based on inverse distance weighting 
(IDW) of annual average NO2 and benzene 
concentrations measured at NAPS monitors 

Table 1. PM2.5, NO2, benzene, ethylbenzene, and 1,3-butadiene gradients determined from the literature 
and incorporated with national LUR model predictions.

Substance Source Increase at source Gradient distance (m)
PM2.5 Highway 1.25a 75b

Major road 1.1a 75b
NO2 Highway 1.65a 300c

Major road 1.2a 100c
Benzene Gas station 6.5d 100d

Highway/major road 3.25e 50f
Local road 1.5e 50f

Ethylbenzene Highway 3.7g 300h
Major road 2.2g 300h
Local road 1.4g 300h

1,3-Butadiene Highway 4i 75i

aSmargiassi et al. (2005). bBeckerman et al. (2008), Hitchins et al. (2000), Roorda-Knape et al. (1998), Tiitta et al. (2002). 
cBeckerman et al. (2008), Gilbert et al. (2003, 2007), Roorda-Knape et al. (1998), Su et al. (2009). dKarakitsios et al. (2007). 
eHellén et al. (2006), Parra et al. (2009), Thorsson and Eliasson (2006), Vardoulakis et al. (2002). fBeckerman et al. (2008), 
Thorsson and Eliasson (2006), Venkatram et al. (2009). gParra et al. (2009), Roukos et al. (2009), Wang and Zhao (2008). 
hWang and Zhao (2008). iVenkatram et al. (2009).
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(with and without deterministic gradients). 
Because of NAPS monitor density in Canada, 
kriging could not be applied.

Population exposure assessment. The 
national pollutant models were applied to each 
of the 478,831 Statistics Canada street block-
face centroid locations in 2006 to estimate 
population exposures. First, we applied the 
LUR models to each block point to derive 

a unique predicted pollutant concentration 
for each point, representing the average expo-
sure level for 89 and a SD of ± 158 individu-
als. We used a GIS to identify the distance 
of each block centroid to the nearest high-
way, major road, local urban road, and gas 
stations and adjusted the corresponding LUR 
model estimate when the street block point 
was located within an associated gradient. We 

then estimated population-weighted exposures 
to PM2.5, NO2, benzene, ethyl benzene, and 
1,3-butadiene in the Canadian population as a 
whole, and we estimated uncertainty using the 
95% confidence limits for LUR model predic-
tions. Because there was insufficient informa-
tion in the literature to examine uncertainty 
for specific gradients, we selected ± 50% for all 
gradients (values shown in Table 1).

Results
National LUR model results. Table 2 sum-
marizes the national LUR model results. The 
PM2.5 model predicted 46% of PM2.5 varia-
tion and was dominated by satellite predic-
tions, which alone explained 41% of PM2.5 
variation. The NO2 model predicted 73% of 
NO2 variation and length of all roads within 
10 km was the dominant predictor, explain-
ing 55% of NO2 variation. This variable was 
only moderately correlated (r = 0.56) to NO2 
predictions from satellite data, which further 
explained 4% of NO2 variation in the final 
model. The models for benzene, ethyl benzene, 
and 1,3-butadiene had similar predictive 
results, explaining 62, 67, and 68% of pol-
lutant variability, respectively. Data from one 
monitor were removed as an outlier from the 
benzene and ethyl benzene models (St. John 
Baptiste, located in Montreal east city) and 
from the 1,3-butadiene model (Sarnia, located 
in southern Ontario near the Detroit–Windsor 
border), which were associated with the highest 
pollutant concentration for each substance.

Spatial autocorrelation of national LUR 
models. Spatial autocorrelation of the LUR 
model residuals was examined using Moran’s 
I in ArcGIS. Spatial autocorrelation was 
present in the PM2.5 LUR model residuals 
(Moran’s I = 0.33, p < 0.001), indicating that 
a moderate amount of spatial autocorrelation 

Table 2. National LUR model results for PM2.5, NO2, benzene, ethylbenzene, and 1,3-butadiene.

Variable Distancea Value SE p-Value
PM2.5 model (R 2 = 0.46, RMSE = 1.529)

Intercept — 2.802 0.497 < 0.0001
Satellite PM2.5 (µg/m3) — 2.392 0.263 < 0.0001
NPRI emissions (tonnes) 5 km 1.63e–3 5.95e–4 0.007
Industrial land use (m2) 1 km 1.03e–6 4.18e–7 0.014

NO2 model (R 2 = 0.73, RMSE = 5.470)
Intercept — 13.179 1.374 < 0.0001
Satellite NO2 (ppb) — 1.4903 0.355 < 0.0001
Industrial land use (m2) 2 km 3.21e–6 5.73e–7 < 0.0001
Road length (m) 10 km 7.42e–6 9.04e–7 < 0.0001
Summer rainfall (mm) — –0.010 0.002 < 0.0001

Benzene modelb (R 2 = 0.62, RMSE = 0.298)
Intercept — 0.346 0.069 < 0.001
Major road length (m) 10 km 1.18e–6 2.56e–7 < 0.001
NPRI emissions (present) 10 km 0.526 0.089 < 0.001

Ethylbenzene modelc (R 2 = 0.67, RMSE = 0.193)
Intercept — 0.152 0.039 < 0.001
Population (count) 10 km 6.74e–7 7.25e–8 < 0.001
NPRI emissions (present) 2 km 0.272 0.071 < 0.001

1,3-Butadiene modeld (R 2 = 0.68, RMSE = 0.034)
Intercept — 0.011 0.009 0.208
Road length (m) 750 m 3.89e–6 7.93e–7 < 0.001
Highway (present) 500 m 0.041 0.012 0.002
Commercial land use (m2) 10 km 1.60e–9 5.97e–10 0.010

Satellite PM2.5 and NO2 are satellite-derived estimates of PM2.5 and NO2. Land use is the area of specific land-use 
types (industrial, commercial) within the associated buffer distance. Road length refers to the length of different road 
classifications (all, major, highways) within the associated buffer distance. Summer rainfall refers to the amount of 
rainfall recorded from May to September from the nearest meteorological station. NPRI emissions refer to the amount of 
annual emissions of the model substance released from industries that reported to the NPRI. NPRI emissions (present) 
refers to the presence of NPRI facilities that have released a model substance into the air. Population (count) refers to 
the number of individuals who resided within the associated buffer distance. 
aRadius of cicular buffers used to derive variables. bOne outlier removed with benzene concentration of 3.55 µg/m3. cOne 
outlier removed with ethylbenzene concentration of 2.57 µg/m3. bOne outlier removed with 1,3-butadiene concentration 
of 0.82 µg/m3.

Figure 2. National annual average models for PM2.5, highlighting southern Ontario and the city of Toronto (A), and for NO2, highlighting southwestern British 
Columbia and the city of Vancouver (B), that incorporate satellite-derived pollutant estimates, geographic land use variables, and deterministic gradients. The 
seven cities shown in (B) represent locations of independent monitoring data used to evaluate the national NO2 and benzene models.
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remained that was not explained by the PM2.5 
model predictors. Clustering of positive resid-
uals (model underpredicting by an average 
of 2.57 μg/m3) occurred in the rural interior 
of British Columbia. An indicator variable 
for British Columbia substantially reduced 
the spatial autocorrelation (Moran’s I = 0.03, 
p = 0.04). Sensitivity analysis using a sum-
mer-only PM2.5 model indicated no spatial 
autocorrelation (Moran’s I = 0.04, p = 0.01), 
supporting our hypothesis of woodburning as 
the primary source of model underprediction 
in this region. No significant spatial autocor-
relation existed in LUR model residuals for 
NO2 (Moran’s I = 0.03, p = 0.44), benzene 
(Moran’s I = –0.20, p = 0.13), ethyl benzene 
(Moran’s  I  = –0.00, p  = 0.87),  and 
1,3-butadiene (Moran’s I = 0.09, p = 0.32).

Incorporating gradients with national 
LUR models. Deterministic gradients were 
added to LUR models, because we could not 
estimate the effects of local-scale pollution 
sources from NAPS data alone. Figure 2A 
illustrates the final PM2.5 model (LUR plus 
gradients) for Canada as a whole and for 
southern Ontario and the city of Toronto. 
Figure 2B illustrates the final national NO2 
model (LUR plus gradients) for Canada as a 
whole and for southwestern British Columbia 
and the city of Vancouver. These maps illus-
trate the spatial resolution of the final national 
pollutant models; however, for population 
exposure assessment, the LUR model results 
and deterministic gradients were applied 
to street block point locations, as shown in 
Figure 3, which illustrates the final national 
benzene model (LUR plus gradients) calcu-
lated at the block point level.

Evaluation of national pollutant models. 
Evaluation of LUR models using bootstrap 
and leave-one-out analyses. The distribution 
of all model coefficients for each pollutant 
resulting from bootstrap analysis showed 
normal distributions. The NO2 model was 
the least sensitive to monitor selection, with 
a bootstrap R2 95% CI of 65–81. Models 
for PM2.5, benzene, ethyl benzene, and 
1,3-butadiene demonstrated larger uncer-
tainty to monitor selection, with R2 95% 
CIs of 33–59, 44–80, 49–85, and 53–82, 
respectively. Variable coefficients for indus-
trial NPRI proximity variables were extremely 
sensitive to monitor selection. The leave-one-
out analyses indicated no significant bias in 
any LUR model, as demonstrated by the 
mean ± SD error: 1.07e–3 ± 5.61 for NO2; 
–6.35e–3 ± 1.59 for PM2.5; –0.04 ± 0.32 for 
benzene; –0.01 ± 0.04 for 1,3-butadiene; and 
–0.04 ± 0.22 for ethyl benzene.

Evaluation of NO2 and benzene mod-
els using city-specific data. On average, the 
national NO2 LUR plus gradient model pre-
dicted 43% of the within-city NO2 variation 
(based on the city-specific data evaluation) 

compared with 22% predicted based on IDW 
of NAPS monitors plus gradients (Table 3). 
National LUR, LUR plus gradients, IDW, and 
IDW plus gradients models overpredicted the 
city-specific NO2 measurements, with aver-
age city-specific intercepts of 4.56, 7.45, 8.51, 
and 11.56 μg/m3, respectively. City-specific 
scatter plots of measured and modeled NO2 
concentrations are illustrated in Supplemental 
Material, Figure 1 (doi:10.1289/ehp.1002976).

For benzene, all modeling methods per-
formed poorly in explaining within-city ben-
zene variation. The LUR plus gradients model 
explained, on average, only 16% of within-
city variability in benzene concentrations 
compared with 11% based on IDW plus gra-
dients (Table 3). In the evaluation using the 
Montreal city-specific benzene concentrations, 
four outliers were removed (all concentrations 
> 2 μg/m3), and one outlier (4.10 μg/m3) was 
removed in the Toronto evaluation. Benzene 
models also overpredicted city-specific con-
centrations, based on city-specific intercepts of 
modeled versus measured concentrations [see 
Supplemental Material Figure 2 (doi:10.1289/
ehp.1002976)]. Sarnia, a high-density 

industrial community with 46 NPRI emitters, 
had poor NO2 and benzene model evaluations.

Canadian population exposure assess-
ment. The final LUR models and gradients 
were applied to all 478,831 street block-face 
centroid locations to conduct population expo-
sure assessments. Estimated mean (95% CI) 
population exposures (micrograms per cubic 
meter) to ambient PM2.5, NO2, benzene, ethyl-
benzene, and 1,3-butadiene in Canada based 
on the LUR models were 8.10 (5.84–10.43), 
22.40 (13.14–33.51), 0.94 (0.57–1.31), 
0.38 (0.25–0.52), and 0.086 (0.035–0.138), 
respectively. Estimates for the same pollutants 
based on the national LUR plus gradients models 
were 8.39 (6.00–11.13), 23.37 (14.01–35.73), 
1.04 (0.59–1.49), 0.63 (0.35–1.10), and 
0.089 (0.036–0.146), respectively. Wide ranges 
of exposure levels were estimated in Canada 
for all substances; see Supplemental Material, 
Figure 3 (doi:10.1289/ehp.1002976) for popu-
lation exposure distributions.

Discussion
We created national pollutant models from 
fixed-site monitoring data that incorporate 

Figure 3. National benzene LUR model plus gradients (illustrating the city of Toronto) calculated for each 
street block point in Canada (n = 478,831).
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satellite, geographic, and deterministic com-
ponents and demonstrated that these models 
can improve exposure assessment over large 
geographic areas compared with approaches 
based solely on interpolation of fixed-site 
monitoring data. We also demonstrated how 
these models can be used for population expo-
sure assessment.

The national LUR models explained 73% 
of pollution variation in NAPS measurements 
for NO2, and lesser degrees for PM2.5 (46%), 
benzene (62%), ethylbenzene (67%), and 1,3-
butadiene (68%). The NO2 and PM2.5 mod-
els were least sensitive to monitor selection, 
whereas models for VOCs were more sensi-
tive—likely because of the smaller number of 
monitors on which LUR estimates were based 
(n = 53). The predictive performance of the 
PM2.5 model [R2 = 0.46, root mean square 
error (RMSE) = 1.53 μg/m3] was consistent 
with other large-scale modeling studies based 
on different monitoring methodologies and 
data inputs (Beelen et al. 2009; Hart et al. 
2009; Liao et al. 2006; Ross et al. 2007).

The national LUR models generally cap-
tured regional patterns in pollutant concentra-
tions, corresponding to NAPS monitor siting 
criteria, but were less effective at identifying 
small-scale geographic predictor variables. 
For example, only 35 NAPS monitors were 
located within 500 m of a major road and 
only 7 monitors were within 500 m of a major 
industrial emission source. Such small sample 
sizes greatly reduce the power of the models to 
capture these specific pollutant sources. Some 
city-specific LUR methods have used location-
allocation methods to more fully represent 
the true spatial variation in pollution levels 
and to capture the range of predictor variables 
(Jerrett et al. 2005). Models based on fixed-site 
monitor data may therefore need additional 
approaches to represent local-scale pollutant 

variability not captured by fixed-site monitors. 
This was indeed the case with the Canadian 
NAPS network, but larger regulatory networks, 
such as those in the United States, may bet-
ter represent the range of predictor variables 
needed to build local-scale LUR models.

To address the lack of local-scale geo-
graphic variability in the NAPS data, we 
incorporated deterministic gradients based on 
proximity to specific sources (i.e., vehicles and 
gas stations). The final NO2 LUR plus gradi-
ent model improved prediction of within-city 
pollutant variation considerably compared 
with the LUR model alone and interpola-
tion methods. On average, the final model 
predicted 43% of within-city NO2 variation 
compared with 18% using IDW. Both the 
national benzene model and IDW predicted 
within-city benzene poorly, which may be 
due to the small number of NAPS monitors 
on which the model was based, the relatively 
small variation in within-city benzene levels, 
or the inability of gradients to capture local 
benzene concentrations. Similar to the NO2 
model, the evaluation of the benzene model 
with Sarnia data was poor, reflecting the diffi-
culty in capturing unique high-density indus-
trial conditions in a national model.

Gradients were based on literature reviews. 
The lack of methodological consistency among 
published data of pollutant level increases near 
specific sources and the distance required for 
pollutant levels to return to background were 
clear limitations. To improve reliability of gra-
dients, we used linear functions to represent 
the decreases in pollutant levels found in the 
initial portions of the exponential decay curves 
found in the literature. The methodology used 
here could be augmented as new gradients 
become available or with other modeled data.

Population exposure assessment was 
conducted using the national models and 

census street block-face points. The population-
weighted average exposures to PM2.5, NO2, 
benzene, ethyl benzene, and 1,3-butadiene were 
8.39, 23.37, 1.04, 0.63, and 0.089 (μg/m3), 
respectively. The uncertainty of population 
exposure estimates were driven primarily by 
LUR model uncertainty. Although the results 
of the national LUR models are similar to city-
specific LUR models in their predictive capacity 
and error, we are unaware of any LUR mod-
els that have been applied to estimate expo-
sure uncertainty. Although these exposures are 
low compared with other developed countries, 
exposures in particular locations in Canada 
are relatively high. For example, the 90th per-
centiles of exposures (micrograms per cubic 
meter) are 9.78 for PM2.5, 34.81 for NO2, 1.61 
for benzene, 1.01 for ethyl benzene, and 0.14 
for 1,3-butadiene. The ability of the national 
models to capture local-scale pollutant variabil-
ity allows for more realistic exposure assessments 
and assessments that can potentially identify 
high-risk populations. Future work will refine 
approaches for using the national models to cal-
culate population exposure assessments, incor-
porate socioeconomic information from census 
to examine environment injustice issues, and 
integrate national models into a risk-assessment 
framework that incorporates exposures from 
other sources and microenvironments.

This study faced a number of challenges and 
limitations to creating national pollutant mod-
els from fixed-site monitors and applying these 
models to estimate Canadian population expo-
sures. First, the NAPS monitors in Canada are 
centered in large metropolitan areas, and mod-
eled relationships will therefore be weighted 
toward these areas. This is appropriate for 
population exposure assessment, because these 
locations represent the majority of Canadians, 
but in rural areas the models could be adjusted 
or a background concentration could be used. 
This is particularly relevant to the benzene, 
ethyl benzene, and 1,3-butadiene models, which 
were based on data from monitors located 
almost exclusively in large urban areas or sited 
near large industrial sources. Second, we had 
limited data on pollutant sources and source 
strengths such as traffic volumes. In addition, 
we did not model emissions from woodburning 
stoves and forest fires, which may have caused 
us to underpredict PM2.5 concentrations in the 
interior of British Columbia. Third, parsimo-
nious LUR models were created, because the 
specificity of model variables may be important 
for informing surveillance and regulation. This, 
however, leads to models that do not capture 
the complex interactions between geographic 
characteristics and pollutant sources, and even 
the simplest LUR predictors (e.g., major roads 
or NPRI facilities within 10 km) capture com-
plex mixes of geographic characteristics and 
pollutant sources. Fourth, we compared model 
estimates with city-specific measurements 

Table 3. Evaluation of national NO2 and benzene models, as well as IDW estimates from fixed-site moni-
tors, against independent city-specific measurement data. 

R2 (RMSE)
Substance na LURb LUR + Gc IDWd IDW + Ge

NO2
Edmonton 50 0.60 (3.67) 0.41 (4.59) 0.10 (5.52) 0.01 (5.92)
Montreal 135 0.41 (4.28) 0.48 (4.04) 0.31 (4.63) 0.41 (4.29)
Sarnia 34 0.42 (4.21) 0.49 (4.04) 0.12 (5.15) 0.19 (5.12)
Toronto 196 0.18 (7.69) 0.36 (6.78) 0.13 (7.93) 0.32 (6.99)
Victoria 40 0.19 (3.95) 0.37 (3.70) 0.23 (3.86) 0.26 (3.98)
Vancouver 114 0.31 (6.41) 0.42 (5.93) 0.31 (6.43) 0.36 (6.24)
Winnipeg 49 0.54 (3.65) 0.51 (3.86) 0.08 (5.17) 0.02 (5.43)
Average 618 0.39 (4.84) 0.43 (4.71) 0.18 (5.53) 0.22 (5.42)

Benzene
Montrealf 131 0.33 (0.24) 0.26 (0.25) 0.11 (0.28) 0.05 (0.29)
Sarnia 37 0.02 (0.57) 0.04 (0.56) 0.00 (0.57) 0.03 (0.56)
Torontog 44 0.03 (0.19) 0.22 (0.17) 0.00 (0.19) 0.34 (0.16)
Winnipeg 94 0.08 (0.25) 0.10 (0.25) 0.00 (0.26) 0.01 (0.26)
Average 306 0.12 (0.31) 0.16 (0.31) 0.03 (0.33) 0.11 (0.32)

aNumber of within-city measurement locations. bNational LUR model. cNational LUR model plus gradients (G). dIDW 
interpolation of NAPS fixed-site monitoring data. eIDW interpolation of NAPS fixed-site monitoring data plus gradients. 
fFour outliers removed with highest city concentrations (> 2 µg/m3). gOne outlier removed with highest city concentration 
(4.10 µg/m3). 
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for NO2 and benzene collected in different 
years and using a variety of methodologies. 
Nevertheless, these measurements represent the 
best data on within-city pollutant variability 
available. Fifth, applying LUR model results 
to approximately half a million block points is 
currently extremely computationally and time 
intensive. Finally, the geographic accuracy of 
street block centroids may introduce errors 
into the gradient portions of the models and 
therefore the exposure assessment, particularly 
between rural and urban areas. These errors, 
however, are likely spatially random within 
rural and urban areas across Canada.

Conclusions
National exposure models were required by 
Carex Canada to produce population expo-
sure assessments that captured both between-
city and within-city pollution variability. 
We created national PM2.5, NO2, benzene, 
ethyl benzene, and 1,3-butadiene models from 
fixed-site monitoring data and found that a 
combination of data sources and methods to 
capture background, regional, and local-scale 
pollution variation improved exposure assess-
ment over traditional IDW interpolation 
approaches. The national pollutant models were 
applied to street block-face points, represent-
ing the locations of the Canadian population, 
to determine population exposure estimates. 
Estimates of average population exposure levels 
in Canada are PM2.5 8.39, NO2 23.37, benzene 
1.04, ethyl benzene 0.63, and 1,3-butadiene 
0.09 (μg/m3). The modeling approach devel-
oped here uses readily available data and could 
be reproduced over time, for example, every 
5 years with the Canadian census. This would 
provide updated population exposure assess-
ments and a long-term surveillance capacity for 
monitoring trends in population exposures, for 
identifying potential susceptible populations 
and geographic locations with elevated expo-
sures, and for evaluating the impacts of policies 
and regulatory changes on exposure levels.
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